Local Classification of Conformally-Einstein Kähler Metrics in Higher Dimensions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundary Regularity for Conformally Compact Einstein Metrics in Even Dimensions

We study boundary regularity for conformally compact Einstein metrics in even dimensions by generalizing the ideas of Michael Anderson found in [And03] and [And06]. Our method of approach is to view the vanishing of the Ambient Obstruction tensor as an nth order system of equations for the components of a compactification of the given metric. This, together with boundary conditions that the com...

متن کامل

Topics in Conformally Compact Einstein Metrics

Conformal compactifications of Einstein metrics were introduced by Penrose [38], as a means to study the behavior of gravitational fields at infinity, i.e. the asymptotic behavior of solutions to the vacuum Einstein equations at null infinity. This has remained a very active area of research, cf. [27], [19] for recent surveys. In the context of Riemannian metrics, the modern study of conformall...

متن کامل

Dehn Filling and Einstein Metrics in Higher Dimensions

We prove that many features of Thurston’s Dehn surgery theory for hyperbolic 3manifolds generalize to Einstein metrics in any dimension. In particular, this gives large, infinite families of new Einstein metrics on compact manifolds.

متن کامل

Einstein and Conformally Flat Critical Metrics of the Volume Functional

Let R be a constant. Let Mγ be the space of smooth metrics g on a given compact manifold Ω (n ≥ 3) with smooth boundary Σ such that g has constant scalar curvature R and g|Σ is a fixed metric γ on Σ. Let V (g) be the volume of g ∈ Mγ . In this work, we classify all Einstein or conformally flat metrics which are critical points of V (·) in Mγ .

متن کامل

Some Results on the Structure of Conformally Compact Einstein Metrics

The main result of this paper is that the space of conformally compact Einstein metrics on any given manifold is a smooth, infinite dimensional Banach manifold, provided it is non-empty, generalizing earlier work of Graham-Lee and Biquard. We also prove full boundary regularity for such metrics in dimension 4 and a local existence and uniqueness theorem for such metrics with prescribed metric a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the London Mathematical Society

سال: 2003

ISSN: 0024-6115,1460-244X

DOI: 10.1112/s0024611503014175